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Abstract

Printing conditions ensure that prints are produced consistently and to a high 
standard by describing all relevant parameters of the printing process. This is 
particularly important in industries where print quality is critical, such as in the 
production of packaging and labels.

In this paper, we present a novel approach to the classification of printing conditions 
using machine learning models. Our method involves the analysis of spectral 
measurement data to determine technical metadata such as the printing process, 
substrate type and print sequence. The accuracy of this data is crucial for setting up 
physical models, which can be used to predict overprints.

Previously, this data had to be manually entered which was error prone. However, 
our models can support the user by predicting this information accurately and 
quickly to ultimately ensure a high quality of prints.

We demonstrate the effectiveness of our method through automated and manual 
experimentation. Additionally, we describe the setup of an evaluation in a 
production environment.

Introduction

For predictable and reproducible prints, especially when it comes to high quality 
expectations in color, the printing behavior of a machine is often captured via 
a characterization. This includes creating and printing a test chart which is 
then measured. The set of parameters that describe under which conditions this 
characterization has been produced is then called the printing condition. Linking 
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the printing condition to the characterization and logging it accurately ensures that 
future prints yield the same result and color can be reproduced reliably.

However, for a given characterization, the corresponding printing condition under 
which the characterization has been produced, is not always known. This can  occur  
for  several  reasons.  Notably,  it  may  happen  because  only  the measured  test  
chart  is  shared  with  third  parties,  or  the  original  printing conditions were not 
permanently recorded. Classifying the printing condition correctly from a given 
test chart can be both time consuming and error prone. In this paper, we show that 
machine learning models can be used to support users by providing suggestions for 
printing conditions from a given characterization.

With this support, the time spent gathering information is reduced and correct 
parameters improve the next steps in the process, such as predicting overprints and 
searching in databases for similar, existing characterizations, ultimately resulting in 
higher quality color reproductions.

Methodology for predicting printing conditions from measurement data

The basic idea for predicting printing conditions can be seen in Figure 1 and is 
divided into three steps:

1.	 The model’s input consists of spectral measurement data from a specific 
characterization, enriched with custom-engineered features.

2.	 The model itself classifies different parameters of the printing condition 
from the input data.

3.	 The  printing  condition  is  then  the  composition  of   the  various 
parameters and can be used for further steps in the process.

The machine learning model can be a single model predicting the printing condition 
as a whole or as suggested in this paper, a composition of multiple models that focus 
on one single task – predicting individual parameters of the printing condition.

Figure 1. For classifying a parameter for a printing condition, a machine learning model  
receives as input a characterization and predicts the corresponding parameter.
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Parameter
Printing process
Front or reverse printing 
Surface finishing 
Substrate category
Sequence of inks

Learning Task
Classification 
Classification 
Classification
Classification
Classification

Classes
Flexo, Gravure, Offset, Digital
Front, Reverse
Laminate, Varnish, None
Paper, Cardboard, Film
[inkio, ..., inkik]k

Data collection and analysis

Training a machine learning model using supervised learning requires known input 
data (characterizations) and known labels (printing condition parameters). The data 
that was used for this paper consists of roughly 100 measurement files with known 
printing conditions and was collected from printers and prepresses across different 
applications and using different printing conditions.

Five key parameters for printing conditions have been identified for having the 
biggest impact on the final color impression and one model was trained for each of 
them. See table 1 for details.

While one measurement file has exactly one class of each parameter assigned to it, 
the file itself consists of many patches: a combination of device values per ink used 
and the spectrum measured for it. The amount of data was not sufficient for training  
models  on  the  entire  measurement  file,  but  with  roughly  300,000 patches it 
was possible to train models patch-wise. Hence, we followed a two- step process 
for every parameter:

For every parameter:
1.	 Train one model per patch.
2.	 Assemble the predictions for each patch into one class.

The training itself is described in the section Training the models. The final 
predicted class is determined by selecting the most frequently predicted value per 
patch, except for the sequence of inks. The assembly for this parameter is explained 
in more detail in the aforementioned section.

Figure 2. Left: Pairwise prediction of which ink lies on top of the other. Right: Inks ordered  
based on the left pair-wise ordering. This represents the final ink sequence.

Table 1. Different parameters of a printing condition and their class representations.
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Data preparation and feature engineering

For being able to train the models, all data must be brought into the same format. 
Since measurement files are basically tabular data consisting of rows (patches) 
and columns (device values and spectral values), the main challenge is to map 
all columns to the same schema. It is worth noting that measurement files mainly 
consist of two types of columns:

1.	 Columns representing the spectral values (e. g. “NM_380”)
2.	 Columns representing the device values (e. g. “CMYK_C”)

Additional columns include for example the CIE-Lab-values which can be ignored 
because they can be calculated from the spectral values.

Bringing the spectral columns for all (potential) measurement files into the same 
schema can  be  done  easily  by  cropping to  the  range of  400—700 nm  
and reducing to a step distance of 10 nm in between which is the standard for 
most measurement devices anyways and sufficiently precise for the use case of 
predicting parameters.

The task of applying one schema to all potential inks and their device values is 
more challenging. For achieving a common mapping that also works for unknown 
inks outside the training data, we clustered the 100 % patches of all training data 
and map all inks into bins: 2 gray bins (light and dark gray) for inks with  a  small  
chromatic  value  and  6  chromatic  bins  for  inks  with  a  high chromatic value. 
The exact number of bins can be easily varied but proved to work well for the data 
we had available, including data for testing that was not part of the training data set.

Additionally, the quality of the predictions can be improved through feature 
engineering, i. e. adding more columns to the data set that precomputes some 
features making it easier for the models to learn correlations within a single class.  
The  engineered  features  depend  heavily  on  the  available  data.  For example, 
we included the derivative of each spectrum as one feature. This way
 
the information on how big of a change lies within each range of the spectrum is 
more easily available to the models and improves overall quality.

Training the models

For every printing condition parameter, the training of a machine learning model is 
done in two steps:
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For every printing condition parameter:
1.	 Train the model
	 During training, the model learns relationships between the characterization 

(i. e. measurement data and additional features) and printing condition 
parameter classes (labels). 80 % of the available data is used for training.

2.	 Evaluate the model
	 For evaluating the results, the remaining 20 % of the available data is used 

as test set to see with different metrics like accuracy and F1-score how 
well the model predicts the correct label for a given characterization.

The  models  used  in  this  paper  are  gradient-boosting  algorithms  based  on 
decision trees (Ke et al., 2017), which performed on our data significantly better 
than other algorithms tested. Useful models depend on various parameters, though, 
such as the underlying data and features.

Performance of different parameters

The  quality  of  the  predictions  varies  throughout  the  tasks.  In  table 2,  the 
performances of the models on the various tasks are displayed.

It can be seen that e. g. for the printing process the accuracy of the predictions is 
very high. One reason for this is that the users who assign the printing condition to 
the characterization choose the correct printing process very precisely. Moreover, 
some processes have clearly distinguishable characteristics in the spectra, for 
instance the so called “flexo-bump”.

On the other hand, the accuracy for predicting the substrate category is not very 
high. It might be sufficient for an application but in one out of four cases it suggested 
the wrong substrate category to the user. One reason for this is that the categories in 
the training data were often incorrect. Hence, we manually labelled part of the data 
where we knew the correct category which ultimately resulted in a significantly 
smaller dataset.

Parameter
Printing process
Front or reverse printing
Surface finishing
Substrate category
Sequence of inks

Test data
Accuracy
0.917
0.833
0.930
0.857
0.833

F1-score
0.938
0.655
0.870
0.681
0.500

Live data
Accuracy
0.803
0.803
0.906
0.721
0.819

F1-score
0.783
0.654
0.239
0.488
0.574

Table 2. Performance comparison of the trained machine learning models for different printing 
conditions parameters, evaluated per measurement file. The test data set consists of 20 % of  
the original characterization data set. The live data set, which continually expands through  

user interaction with the prototype, included 1,300 test charts at the time of publication.
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The most challenging parameter to predict is certainly the sequence of inks the 
measurement chart has been printed with. If we only did a pure classification on the 
possible combinations for inks, the number of possible classes would be higher than 
the number of characterizations we had which is infeasible for training. Instead, we 
broke down the task to a patch-wise prediction:

1.	 For all two ink overprints, predict which ink is printed on top of the other 
for every measurement chart.

2.	 Assemble the correct ink sequence from these pairs.

This improved the results overall but brought along new challenges: It can happen 
that for a 10 % Cyan, 10 % Yellow patch the model predicts that Yellow is printed 
on top and for the 20 % Cyan, 20 % Yellow patch the model predicts that Cyan is 
printed on top. These contradictions can be resolved via algorithms known from 
election theory. We used the well-known Schulze-method (Schulze,
2011) to address these inconsistencies. Nevertheless, it is not always possible to 
predict a print sequence at all, for example if there are two groups of inks in a 
measurement file without overprints between these two groups.

Evaluation in a production-like environment

Because the overall goal of this novel approach is to provide the user with 
suggestions to improve speed and quality of the entire process, we integrated this  
model  into  a  production  environment  as  a  proof  of  concept.  Table 2 compares 
the performance of this model on the test data set and in a live environment with 
real users across the industry.

Figure 3. Architectural overview of the three different environments Dev, Test, and Prod and the data 
flow between the individual modules. The raw data is being prepared for training and the final model  
is served for inference (making predictions for the user). The user gives feedback on the suggestions  

and the end user feedback is incorporated into new model investigation and training.
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Figure 3 shows the software architecture of how this model is integrated and uses 
the feedback from the user (accepts the suggestions or corrects them) for future 
training. It is also meant to provide a different angle on the “Hidden technical dept 
in machine learning systems” (Sculley et al., 2015).

Further research

The limited size of the data set has consequently restricted the number of models 
available for evaluation. With additional data, it would be interesting to explore models 
that operate on the entire measurement file, such as convolutional neural networks.

Moreover, the value for the end user should be investigated further. We introduced 
for instance a metric for the print sequence on how many inks a user must 
manually drag and draw to correct the suggested sequence of inks. This concept 
can be extended to the other parameters and give a realistic impression of “user 
satisfaction”. Additionally, user surveys should be conducted to understand the 
impact for the end-user even better.

Conclusions

In this paper, we have demonstrated how machine learning models can be used to 
predict printing conditions from given measurement data. Specifically, we trained 
models to predict five different parameters of a printing condition. To evaluate the 
effectiveness of these models, we compared their performance on a
 
test data set and in a live user environment. Our results show that while the models 
performed slightly worse in the live setting compared to the test data set, their 
performance remained comparable and acceptable. This indicates that our machine 
learning approach is robust and capable of providing useful predictions in real-world 
applications, despite the inherent challenges and variability of live environments.
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