Achieving Accurate Printing Conditions
Through Machine Learning

Torben Rapp and Philipp Troster

Keywords: machine learning, artificial intelligence, printing condition,
characterization, color management

Abstract

Printing conditions ensure that prints are produced consistently and to a high
standard by describing all relevant parameters of the printing process. This is
particularly important in industries where print quality is critical, such as in the
production of packaging and labels.

In this paper, we present a novel approach to the classification of printing conditions
using machine learning models. Our method involves the analysis of spectral
measurement data to determine technical metadata such as the printing process,
substrate type and print sequence. The accuracy of this data is crucial for setting up
physical models, which can be used to predict overprints.

Previously, this data had to be manually entered which was error prone. However,
our models can support the user by predicting this information accurately and
quickly to ultimately ensure a high quality of prints.

We demonstrate the effectiveness of our method through automated and manual
experimentation. Additionally, we describe the setup of an evaluation in a
production environment.

Introduction

For predictable and reproducible prints, especially when it comes to high quality
expectations in color, the printing behavior of a machine is often captured via
a characterization. This includes creating and printing a test chart which is
then measured. The set of parameters that describe under which conditions this
characterization has been produced is then called the printing condition. Linking
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the printing condition to the characterization and logging it accurately ensures that
future prints yield the same result and color can be reproduced reliably.

Characterization Classification Print Condition
A fingerprint or test chart Machine learning models Different parameters that
that characterizes a print predict the parameters of ensure the reproducibility
condition is measured. the printing condition. are stored.

Figure 1. For classifying a parameter for a printing condition, a machine learning model
receives as input a characterization and predicts the corresponding parameter.

However, for a given characterization, the corresponding printing condition under
which the characterization has been produced, is not always known. This can occur
for several reasons. Notably, it may happen because only the measured test
chart is shared with third parties, or the original printing conditions were not
permanently recorded. Classifying the printing condition correctly from a given
test chart can be both time consuming and error prone. In this paper, we show that
machine learning models can be used to support users by providing suggestions for
printing conditions from a given characterization.

With this support, the time spent gathering information is reduced and correct
parameters improve the next steps in the process, such as predicting overprints and
searching in databases for similar, existing characterizations, ultimately resulting in
higher quality color reproductions.

Methodology for predicting printing conditions from measurement data

The basic idea for predicting printing conditions can be seen in Figure 1 and is
divided into three steps:

1. The model’s input consists of spectral measurement data from a specific
characterization, enriched with custom-engineered features.

2. The model itself classifies different parameters of the printing condition
from the input data.

3. The printing condition is then the composition of the various
parameters and can be used for further steps in the process.

The machine learning model can be a single model predicting the printing condition

as a whole or as suggested in this paper, a composition of multiple models that focus
on one single task — predicting individual parameters of the printing condition.
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Parameter Learning Task  Classes

Printing process Classification Flexo, Gravure, Offset, Digital
Front or reverse printing Classification Front, Reverse

Surface finishing Classification Laminate, Varnish, None
Substrate category Classification Paper, Cardboard, Film
Sequence of inks Classification [inks, ..., inky]*

Table 1. Different parameters of a printing condition and their class representations.

Data collection and analysis

Training a machine learning model using supervised learning requires known input
data (characterizations) and known labels (printing condition parameters). The data
that was used for this paper consists of roughly 100 measurement files with known
printing conditions and was collected from printers and prepresses across different
applications and using different printing conditions.

Five key parameters for printing conditions have been identified for having the
biggest impact on the final color impression and one model was trained for each of
them. See table 1 for details.

While one measurement file has exactly one class of each parameter assigned to it,
the file itself consists of many patches: a combination of device values per ink used
and the spectrum measured for it. The amount of data was not sufficient for training
models on the entire measurement file, but with roughly 300,000 patches it
was possible to train models patch-wise. Hence, we followed a two- step process
for every parameter:

For every parameter:
1. Train one model per patch.
2. Assemble the predictions for each patch into one class.

The training itself is described in the section 7Training the models. The final
predicted class is determined by selecting the most frequently predicted value per
patch, except for the sequence of inks. The assembly for this parameter is explained

in more detail in the aforementioned section.
Cyan Yellow Yellow
Magenta Yellow

Figure 2. Left: Pairwise prediction of which ink lies on top of the other. Right: Inks ordered
based on the left pair-wise ordering. This represents the final ink sequence.
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Data preparation and feature engineering

For being able to train the models, all data must be brought into the same format.
Since measurement files are basically tabular data consisting of rows (patches)
and columns (device values and spectral values), the main challenge is to map
all columns to the same schema. It is worth noting that measurement files mainly
consist of two types of columns:

1. Columns representing the spectral values (e. g. “NM_3807)
2. Columns representing the device values (e. g. “CMYK C”)

Additional columns include for example the CIE-Lab-values which can be ignored
because they can be calculated from the spectral values.

Bringing the spectral columns for all (potential) measurement files into the same
schema can be done easily by cropping to the range of 400—700 nm
and reducing to a step distance of 10 nm in between which is the standard for
most measurement devices anyways and sufficiently precise for the use case of
predicting parameters.

The task of applying one schema to all potential inks and their device values is
more challenging. For achieving a common mapping that also works for unknown
inks outside the training data, we clustered the 100 % patches of all training data
and map all inks into bins: 2 gray bins (light and dark gray) for inks with a small
chromatic value and 6 chromatic bins for inks with a high chromatic value.
The exact number of bins can be easily varied but proved to work well for the data
we had available, including data for testing that was not part of the training data set.

Additionally, the quality of the predictions can be improved through feature
engineering, i. e. adding more columns to the data set that precomputes some
features making it easier for the models to learn correlations within a single class.
The engineered features depend heavily on the available data. For example,
we included the derivative of each spectrum as one feature. This way

the information on how big of a change lies within each range of the spectrum is
more easily available to the models and improves overall quality.

Training the models

For every printing condition parameter, the training of a machine learning model is
done in two steps:
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For every printing condition parameter:

1. Train the model
During training, the model learns relationships between the characterization
(i. e. measurement data and additional features) and printing condition
parameter classes (labels). 80 % of the available data is used for training.

2. Evaluate the model
For evaluating the results, the remaining 20 % of the available data is used
as test set to see with different metrics like accuracy and F1-score how
well the model predicts the correct label for a given characterization.

The models used in this paper are gradient-boosting algorithms based on
decision trees (Ke et al., 2017), which performed on our data significantly better
than other algorithms tested. Useful models depend on various parameters, though,
such as the underlying data and features.

Performance of different parameters

The quality of the predictions varies throughout the tasks. In table 2, the
performances of the models on the various tasks are displayed.

It can be seen that e. g. for the printing process the accuracy of the predictions is
very high. One reason for this is that the users who assign the printing condition to
the characterization choose the correct printing process very precisely. Moreover,
some processes have clearly distinguishable characteristics in the spectra, for
instance the so called “flexo-bump”.

On the other hand, the accuracy for predicting the substrate category is not very
high. It might be sufficient for an application but in one out of four cases it suggested
the wrong substrate category to the user. One reason for this is that the categories in
the training data were often incorrect. Hence, we manually labelled part of the data
where we knew the correct category which ultimately resulted in a significantly
smaller dataset.

Test data Live data
Parameter Accuracy Fl-score Accuracy Fl-score
Printing process 0.917 0.938 0.803 0.783
Front or reverse printing 0.833 0.655 0.803 0.654
Surface finishing 0.930 0.870 0.906 0.239
Substrate category 0.857 0.681 0.721 0.488
Sequence of inks 0.833 0.500 0.819 0.574

Table 2. Performance comparison of the trained machine learning models for different printing
conditions parameters, evaluated per measurement file. The test data set consists of 20 % of
the original characterization data set. The live data set, which continually expands through

user interaction with the prototype, included 1,300 test charts at the time of publication.
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The most challenging parameter to predict is certainly the sequence of inks the
measurement chart has been printed with. If we only did a pure classification on the
possible combinations for inks, the number of possible classes would be higher than
the number of characterizations we had which is infeasible for training. Instead, we
broke down the task to a patch-wise prediction:

1. For all two ink overprints, predict which ink is printed on top of the other
for every measurement chart.
2. Assemble the correct ink sequence from these pairs.

This improved the results overall but brought along new challenges: It can happen
that for a 10 % Cyan, 10 % Yellow patch the model predicts that Yellow is printed
on top and for the 20 % Cyan, 20 % Yellow patch the model predicts that Cyan is
printed on top. These contradictions can be resolved via algorithms known from
election theory. We used the well-known Schulze-method (Schulze,

2011) to address these inconsistencies. Nevertheless, it is not always possible to
predict a print sequence at all, for example if there are two groups of inks in a
measurement file without overprints between these two groups.

Evaluation in a production-like environment

Because the overall goal of this novel approach is to provide the user with
suggestions to improve speed and quality of the entire process, we integrated this
model into a production environment as a proof of concept. Table 2 compares
the performance of this model on the test data set and in a live environment with
real users across the industry.

Dev
Raw Data Prepared Iraining
Data
Test
Raw Data Prepared Training cedbac
Data

Raw Data Training Model Inference

End User
Figure 3. Architectural overview of the three different environments Dev, Test, and Prod and the data
flow between the individual modules. The raw data is being prepared for training and the final model
is served for inference (making predictions for the user). The user gives feedback on the suggestions
and the end user feedback is incorporated into new model investigation and training.
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Figure 3 shows the software architecture of how this model is integrated and uses
the feedback from the user (accepts the suggestions or corrects them) for future
training. It is also meant to provide a different angle on the “Hidden technical dept
in machine learning systems” (Sculley et al., 2015).

Further research

The limited size of the data set has consequently restricted the number of models
available for evaluation. With additional data, it would be interesting to explore models
that operate on the entire measurement file, such as convolutional neural networks.

Moreover, the value for the end user should be investigated further. We introduced
for instance a metric for the print sequence on how many inks a user must
manually drag and draw to correct the suggested sequence of inks. This concept
can be extended to the other parameters and give a realistic impression of “user
satisfaction”. Additionally, user surveys should be conducted to understand the
impact for the end-user even better.

Conclusions

In this paper, we have demonstrated how machine learning models can be used to
predict printing conditions from given measurement data. Specifically, we trained
models to predict five different parameters of a printing condition. To evaluate the
effectiveness of these models, we compared their performance on a

test data set and in a live user environment. Our results show that while the models
performed slightly worse in the live setting compared to the test data set, their
performance remained comparable and acceptable. This indicates that our machine
learning approach is robust and capable of providing useful predictions in real-world
applications, despite the inherent challenges and variability of live environments.
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